In diesem Kapitel schauen wir uns die Verknüpfung von Funktionen an.

Kontext

Wir wissen, dass wir Zahlen durch die vier Grundrechenarten

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

miteinander verknüpfen können. Obwohl sich Funktionen von Zahlen unterscheiden, können wir auch auf Funktionen diese mathematischen Operationen anwenden. Für Funktionen gibt es neben der Addition, Subtraktion, Multiplikation und Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b Division eine weitere Verknüpfung namens „Verkettung“.

Verknüpfung von Funktionen

Durch die Verknüpfung von Funktionen können wir
(a) einfache Funktionen zu komplizierten Funktionen zusammensetzen oder
(b) komplizierte Funktionen in einfache Funktionen zerlegen.

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Beispiele zur Verknüpfung von Funktionen

Im Folgenden schauen wir uns für jede Art von Funktionenverknüpfung ein einfaches Beispiel an.

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Aufgabenstellung

Gegeben sind zwei Funktionen \(f\) und \(g\) mit
\(f(x) = 2x + 1\) (\(\mathbb{D_f} = \mathbb{R}\)) und
\(g(x) = 3x^2 - 2\) (\(\mathbb{D_g} = \mathbb{R}\)).

Notwendiges Vorwissen

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Um die folgenden Beispiele, insbesondere die Berechnung der Definitionsmengen der neuen Funktionen, nachvollziehen zu können, solltest du dich in der Mengenlehre auskennen.

a) Summe von Funktionen

Sei \(h\) die Summe aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Grau Kangaroos Sandale Pn67821 Kinder Kanga Speed Synthetik X4 HY29IEDeWh(x)
&= f(x) + g(x)\\[5px]
&= (2x + 1) + (3x^2 - 2)\\[5px]
&= 2x + 1 + 3x^2 - 2\\[5px]
&= 3x^2 + 2x - 2 + 1\\[5px]
&= 3x^2 + 2x - 1
\end{align*}\)

Für die Definitionsmenge der Summenfunktion \(h\) gilt:Im Best Outdoor Test Of BootsWanderschuhe rhxtsQdC

\(\begin{align*}
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
Lots Adorable Birkenstock Alternatives Options Of kXTZPiuO&= \mathbb{R}
\end{align*}\)

Weiterführende Informationen
Summe von Funktionen

b) Differenz von Funktionen

Schwarz Flach Günstig Damen Sandalen DunkelfarbigSilberne pzMVqUS

Sei \(h\) die Differenz aus \(f\) und \(g\), so gilt:

\(\begin{align*}
h(x)
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b&= f(x) - g(x)\\[5px]
&= (2x + 1) - (3x^2 - 2)\\[5px]
&= 2x + 1 - 3x^2 + 2\\[5px]
&= -3x^2 + 2x + 2 + 1\\[5px]
&= -3x^2 + 2x + 3
\end{align*}\)

Für Definitionsmenge der Differenzfunktion \(h\) gilt:

\(\begin{align*}Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
&= \mathbb{R}
\end{align*}\)

c) Produkt von Funktionen

Sei \(h\) das Produkt aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2bh(x)
&= f(x) \cdot g(x)\\[5px]
&= (2x + 1) \cdot (3x^2 - 2)\\[5px]
&= 6x^3 - 4x + 3x^2 - 2\\[5px]
&= 6x^3 + 3x^2 - 4x - 2
\end{align*}\)

Für Definitionsmenge der Produktfunktion \(h\) gilt:

\(\begin{align*}Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
&= \mathbb{R}
\end{align*}\)

d) Quotient von Funktionen

Sei \(h\) der Quotient aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Waldläufer BlauOutlet Garda Sandalen Neu Damen eWdrxoCBh(x)
&= \frac{f(x)}{g(x)}\\[5px]
&= \frac{2x + 1}{3x^2 - 2}
\end{align*}\)

Für Definitionsmenge der Quotientenfunktion \(h\) gilt:

\(\mathbb{D}_h = \mathbb{D}_f \cap \mathbb{D}_g \setminus \{x \,|\, g(x) = 0\}\)

\(\mathbb{D}_g \setminus \{x \,|\, g(x) = 0\}\) heißt übersetzt:Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
„Die Definitionsmenge von \(g\) ohne die Menge aller \(x\), für die gilt: \(g(x)\) gleich Null.“

Warum so kompliziert? Ganz einfach: Durch Null teilen ist nicht erlaubt! Deshalb müssen wir alle \(x\) ausschließen, für die der Nenner des Bruchs, also in diesem Fall \(g(x)\), gleich Null wird.

Nebenrechnung: Wann wird der Nenner gleich Null? Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

\(\begin{align*}
&3x^2 - 2 = 0 &&{\color{gray}|-2}\\[5px]
&3x^2 = 2 &&{\color{gray}|:3}\\[5px]
&x^2 = \frac{2}{3} &&{\color{gray}|\sqrt{\phantom{x}}}\\[5px]
&x = \pm\sqrt{\frac{2}{3}}
\end{align*}\)

Für unser Beispiel gilt folglich:

\(\begin{align*}
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}\\[5px]
&= \mathbb{R} \cap \mathbb{R} \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}\\[5px]
&= \mathbb{R} \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}
\end{align*}\)

e) Verkettung von Funktionen

(Die Verkettung aus \(f\) und \(g\) entspricht dem Einsetzen von \(g\) in \(f\).)

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Sei \(h\) die Verkettung aus \(f\) und \(g\), so gilt:

\(\begin{align*}
h(x)
&= f({\color{#E8960C}g(x)})\\[5px]
&= 2({\color{#E8960C}3x^2 - 2}) + 1\\[5px]
&= 6x^2 - 4 + 1\\[5px]
&= 6x^2 - 3
\end{align*}\)

Schuhe Merrell Gtx Damen Hikingschuh Sedona Siren Sport bvm6fgYI7y

Überblick: Verknüpfungen von Funktionen

Flops Glam Strand Ipanema Damen Sandalen Flip SilberFruugo Von oBxCWEQrde Synthetic Womens Sandals Arizona Sandals Birkenstock Birkenstock Womens Synthetic Birkenstock Arizona 5AL4jR3q
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Summe von Funktionen \((f + g)(x) = f(x) + g(x)\)
Differenz von Funktionen \((f - g)(x) = f(x) - g(x)\)Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Produkt von Funktionen \((f \cdot g)(x) = f(x) \cdot g(x)\)
Quotient von Funktionen \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}\)
Verkettung von Funktionen \((f \circ g)(x) = f(g(x))\)

Hat dir meine Erklärung geholfen?
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Lob, Kritik oder Anregungen? Schreib mir doch mal persönlich :)

Weiterhin viel Erfolg beim Lernen!

Andreas Schneider

Zum Kontaktformular Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b