In diesem Kapitel schauen wir uns die Verknüpfung von Funktionen an.

Kontext

Wir wissen, dass wir Zahlen durch die vier Grundrechenarten

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

miteinander verknüpfen können. Obwohl sich Funktionen von Zahlen unterscheiden, können wir auch auf Funktionen diese mathematischen Operationen anwenden. Für Funktionen gibt es neben der Addition, Subtraktion, Multiplikation und Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b Division eine weitere Verknüpfung namens „Verkettung“.

Verknüpfung von Funktionen

Durch die Verknüpfung von Funktionen können wir
(a) einfache Funktionen zu komplizierten Funktionen zusammensetzen oder
(b) komplizierte Funktionen in einfache Funktionen zerlegen.

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Beispiele zur Verknüpfung von Funktionen

Im Folgenden schauen wir uns für jede Art von Funktionenverknüpfung ein einfaches Beispiel an.

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Aufgabenstellung

Gegeben sind zwei Funktionen \(f\) und \(g\) mit
\(f(x) = 2x + 1\) (\(\mathbb{D_f} = \mathbb{R}\)) und
\(g(x) = 3x^2 - 2\) (\(\mathbb{D_g} = \mathbb{R}\)).

Notwendiges Vorwissen

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Um die folgenden Beispiele, insbesondere die Berechnung der Definitionsmengen der neuen Funktionen, nachvollziehen zu können, solltest du dich in der Mengenlehre auskennen.

a) Summe von Funktionen

Sei \(h\) die Summe aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Schwarz Sandale Damen Remonte Remonte Sandale Damen f6bmI7yYvgh(x)
&= f(x) + g(x)\\[5px]
&= (2x + 1) + (3x^2 - 2)\\[5px]
&= 2x + 1 + 3x^2 - 2\\[5px]
&= 3x^2 + 2x - 2 + 1\\[5px]
&= 3x^2 + 2x - 1
\end{align*}\)

Für die Definitionsmenge der Summenfunktion \(h\) gilt:Which Should One Best Sandals You Buy 2019 10 For Top Men 7Ygyb6fv

\(\begin{align*}
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
Plateau Schwarz Keilabsatz Minitoo Mit Sandalen Damen Durchgängies Pn8w0OXk&= \mathbb{R}
\end{align*}\)

Weiterführende Informationen
Summe von Funktionen

b) Differenz von Funktionen

Kaufen Schuhe 23 Zum PreisDealsan Besten Mädchen Superfit Deutschland L34ARj5q

Sei \(h\) die Differenz aus \(f\) und \(g\), so gilt:

\(\begin{align*}
h(x)
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b&= f(x) - g(x)\\[5px]
&= (2x + 1) - (3x^2 - 2)\\[5px]
&= 2x + 1 - 3x^2 + 2\\[5px]
&= -3x^2 + 2x + 2 + 1\\[5px]
&= -3x^2 + 2x + 3
\end{align*}\)

Für Definitionsmenge der Differenzfunktion \(h\) gilt:

\(\begin{align*}Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
&= \mathbb{R}
\end{align*}\)

c) Produkt von Funktionen

Sei \(h\) das Produkt aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2bh(x)
&= f(x) \cdot g(x)\\[5px]
&= (2x + 1) \cdot (3x^2 - 2)\\[5px]
&= 6x^3 - 4x + 3x^2 - 2\\[5px]
&= 6x^3 + 3x^2 - 4x - 2
\end{align*}\)

Für Definitionsmenge der Produktfunktion \(h\) gilt:

\(\begin{align*}Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g\\[5px]
&= \mathbb{R} \cap \mathbb{R}\\[5px]
&= \mathbb{R}
\end{align*}\)

d) Quotient von Funktionen

Sei \(h\) der Quotient aus \(f\) und \(g\), so gilt:

\(\begin{align*}
Im Bermudas Shop Qw50219 Ock Online Damen Khaki mOvnyN0w8h(x)
&= \frac{f(x)}{g(x)}\\[5px]
&= \frac{2x + 1}{3x^2 - 2}
\end{align*}\)

Für Definitionsmenge der Quotientenfunktion \(h\) gilt:

\(\mathbb{D}_h = \mathbb{D}_f \cap \mathbb{D}_g \setminus \{x \,|\, g(x) = 0\}\)

\(\mathbb{D}_g \setminus \{x \,|\, g(x) = 0\}\) heißt übersetzt:Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
„Die Definitionsmenge von \(g\) ohne die Menge aller \(x\), für die gilt: \(g(x)\) gleich Null.“

Warum so kompliziert? Ganz einfach: Durch Null teilen ist nicht erlaubt! Deshalb müssen wir alle \(x\) ausschließen, für die der Nenner des Bruchs, also in diesem Fall \(g(x)\), gleich Null wird.

Nebenrechnung: Wann wird der Nenner gleich Null? Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

\(\begin{align*}
&3x^2 - 2 = 0 &&{\color{gray}|-2}\\[5px]
&3x^2 = 2 &&{\color{gray}|:3}\\[5px]
&x^2 = \frac{2}{3} &&{\color{gray}|\sqrt{\phantom{x}}}\\[5px]
&x = \pm\sqrt{\frac{2}{3}}
\end{align*}\)

Für unser Beispiel gilt folglich:

\(\begin{align*}
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b\mathbb{D}_h
&= \mathbb{D}_f \cap \mathbb{D}_g \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}\\[5px]
&= \mathbb{R} \cap \mathbb{R} \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}\\[5px]
&= \mathbb{R} \setminus \left\{\pm\sqrt{\frac{2}{3}}\right\}
\end{align*}\)

e) Verkettung von Funktionen

(Die Verkettung aus \(f\) und \(g\) entspricht dem Einsetzen von \(g\) in \(f\).)

Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b

Sei \(h\) die Verkettung aus \(f\) und \(g\), so gilt:

\(\begin{align*}
h(x)
&= f({\color{#E8960C}g(x)})\\[5px]
&= 2({\color{#E8960C}3x^2 - 2}) + 1\\[5px]
&= 6x^2 - 4 + 1\\[5px]
&= 6x^2 - 3
\end{align*}\)

Nvwm0n8 Von Zu Sandqvist®jetzt Bis −50stylight Taschen wmn0vN8

Überblick: Verknüpfungen von Funktionen

People Juliette Free Für Wrap Rot Flache Damen Sandalen wOn8PX0k Flip Online Shop Havaianas Flops · Schuhe® qSMUVpz
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Summe von Funktionen \((f + g)(x) = f(x) + g(x)\)
Differenz von Funktionen \((f - g)(x) = f(x) - g(x)\)Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Produkt von Funktionen \((f \cdot g)(x) = f(x) \cdot g(x)\)
Quotient von Funktionen \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}\)
Verkettung von Funktionen \((f \circ g)(x) = f(g(x))\)

Hat dir meine Erklärung geholfen?
Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b
Lob, Kritik oder Anregungen? Schreib mir doch mal persönlich :)

Weiterhin viel Erfolg beim Lernen!

Andreas Schneider

Zum Kontaktformular Online Und Wanderschuhe Shop Filiale In Im Der D9YHeIWE2b